Understanding the alpha-helix to coil transition in polypeptides using network rigidity: predicting heat and cold denaturation in mixed solvent conditions.
نویسندگان
چکیده
Thermodynamic stability in polypeptides is described using a novel Distance Constraint Model (DCM). Here, microscopic interactions are represented as constraints. A topological arrangement of constraints define a mechanical framework. Each constraint in the framework is associated with an enthalpic and entropic contribution. All accessible topological arrangements of distance constraints form an ensemble of mechanical frameworks, each representing a microstate of the polypeptide. A partition function is calculated exactly using a transfer matrix approach, where in many respects the DCM is similar to the Lifson-Roig model. The crucial difference is that the effect of network rigidity is explicitly calculated for each mechanical framework in the ensemble. Network rigidity is a mechanical interaction that provides a mechanism for long-range molecular cooperativity and enables a proper treatment of the nonadditivity of a microscopic free energy decomposition. Accounting for (1) helix <--> coil conformation changes along the backbone similar to the Lifson-Roig model, (2) i to i + 4 hydrogen-bond formation <--> breaking similar to the Zimm-Bragg model, and (3) structured <--> unstructured solvent interaction (hydration effects), a six-parameter DCM describes normal and inverted helix-coil transitions in polypeptides. Under suitable mixed solvent conditions heat and cold denaturation is predicted. Model parameters are fitted to experimental data showing different degrees of cold denaturation in monomeric polypeptides in aqueous hexafluoroisopropanol (HFIP) solution at various HFIP concentrations. By assuming a linear HFIP concentration dependence (up to 6% by mole fraction) on model parameters, all essential experimentally observed features are captured.
منابع مشابه
Molecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملUnified description of solvent effects in the helix-coil transition.
We analyze the problem of the helix-coil transition in explicit solvents analytically by using spin-based models incorporating two different mechanisms of solvent action: explicit solvent action through the formation of solvent-polymer hydrogen bonds that can compete with the intrinsic intra-polymer hydrogen bonded configurations (competing interactions) and implicit solvent action, where the s...
متن کاملSolvent effects in the helix-coil transition model can explain the unusual biophysics of intrinsically disordered proteins.
We analyze a model statistical description of the polypeptide chain helix-coil transition, where we take into account the specificity of its primary sequence, as quantified by the phase space volume ratio of the number of all accessible states to the number corresponding to a helical conformation. The resulting transition phase diagram is then juxtaposed with the unusual behavior of the seconda...
متن کاملThe denaturation transition of DNA in mixed solvents.
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The "melting" transition temperature was found to be 94 degrees C for 4% mass fraction DNA/d-water and 38 degrees C for 4% mass fraction DNA/d-eth...
متن کاملVolumetric characterization of homopolymeric amino acids.
We have determined the partial molar volumes, expansibilities, and adiabatic compressibilities for poly(L-alanine), poly(L-proline), and poly(L-threonine) within the temperature range of 18-55 degrees C. In addition, we have determined at 25 degrees C changes in volume, DeltaV, and adiabatic compressibility, DeltaK(S), associated with the coil-to-helix transitions of poly(L-lysine) and poly(L-g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biopolymers
دوره 75 1 شماره
صفحات -
تاریخ انتشار 2004